伟创 AS320 变频器与中达优控 RS485 通讯示例方法

一、 硬件介绍:

中达优控 PLC 一体机型号为: MC-24MR-12MT-F500-ES-E-COM3 伟创变频器型号为: AS320

通讯 485 通讯方式来实现变频器的启动、停止、故障复位、报警信息的显示。

- 二、 中达优控一体机,内置 RS485 通讯模块,定义端口为 COM3。AS320 自带 485 通讯功能。
- 三、 变频器参数设置:
 - 1) 基本参数设置:
 - 2) F01.01=2 (运行命令设置) 1 为端子控制, 2 为 RS485 通讯控制
 - F01.02=6 (频率给定设置)0为键盘给定,1为键盘模拟电位器给定,

6 为 RS485 通讯给定

- 4) 通讯参数设置:
- 5) F12.00=0 (默认值) 主从站。0 为从站, 1 为主站
- 6) F12.01=2 (根据实际设置站号)
- 7) F12.02=3 (默认值 9600) 波特率设置
- 8) F12.03=0 (默认值)通讯数据格式 N, 8, 1
- 9) 其它参数通讯时都不需要设置。(面板处有一个 485 的开关选择 OFF 就可以了。不需要打开)
- 10) 下面为变频器参数表如图:

4.15 F12 组:通讯参数

参数码 (地址)	名称	内容	出厂值 (设定范围)	可调 属性
F12.00 (0x0C00)	主从选择	V/F SVC FVC PMVF PMSVC PMFVC 0:从机,1:主机	0 (0~1)	STOP
F12.01 (0x0C01)	Modbus 通讯地址	V/F SVC FVC PMVF PMSVC PMFVC 针对不同的从站设定不同值。	1 (1~247)	STOP
F12.02 (0x0C02)	通讯波特率选择	V/F SVC FVC PMIVF PMISVC PMFVC 0: 1200 bps 1: 2400 bps 2: 4800 bps 3: 9600 bps 4: 19200 bps 5: 38400 bps 6: 57600 bps 4: 19200 bps 5: 38400 bps	3 (0~6)	STOP
F12.03 (0x0C03)	Modbus数据格式	V/F SVC FVC PMVF PMSVC PMFVC 0: (N, 8, 1)无校验,数据位: 8,停止位: 1 1: (E, 8, 1)偶校验,数据位: 8,停止位: 1 1: (N, 8, 1)奇校验,数据位: 8,停止位: 1 1: (N, 8, 2)元校验,数据位: 8,停止位: 2 3: (N, 8, 2)元校验,数据位: 8,停止位: 2 4: (E, 8, 2)偶校验,数据位: 8,停止位: 2 5: (O, 8, 2)奇校验,数据位: 8,停止位: 2	0 (0~5)	STOP
F12.04 (0x0C04)	Modbus 传输回应 处理	V/F SVC FVC PMVF PMSVC PMFVC 0: 写操作有回应 1: 写操作无回应	0 (0~1)	RUN
F12.05 (0x0C05)	Modbus 通讯应答 延时	V/F SVC FVC PMVF PMSVC PMFVC 设定 Modbus 通讯应答延时	0ms (0ms~500ms)	RUN
F12.06 (0x0C06)	Modbus 通讯超时 故障时间	V/F SVC FVC PMVF PMSVC PMFVC 设定 Modbus 通讯超时故障时间	1.0s (0.1s~100.0s)	RUN
F12.07 (0x0C07)	通讯断线处理	V/F SVC FVC PMFVC 0: 不检测超时故障 1: 故障并自由停车 2: 警告并继续运行 3: 强制停机	0 (0~3)	RUN
F12.08 (0x0C08)	接收数据(地址 0x3000)零偏	V/F SVC FVC PMVF PMSVC PMFVC 对地址 0x3000 通讯数据进行偏置校正。	0.00 (-100.00~100.00)	RUN
F12.09 (0x0C09)	接收数据(地址 0x3000)增益	V/F SVC FVC PMVF PMSVC PMFVC 对地址 0x3000 通讯数据进行线性校正。	100.0% (0.0%~500.0%)	RUN

AC320 系列变频调速器使用说明书

		. NOTOD X020101101	3: 远购下		
F01.02 频率经 (0x0102)	メリアン 外定源通道 A 3: 4: 6: 8: 11: 11: 11: 11: 11: 11: 11:	/F SVC FVC PMVF 逐频器设定频率的给定频率 : 键盘数字给定频率 : 电流/电压模拟量 Al1 : 电流/电压模拟量 Al2 : 保留 : RS485 通讯给定 : PID 控制给定 0: 选购卡	PMSVC PMFVC 原 A。 1: 1: 键盘模拟电位器给定 给定 5: 5: 端子脉冲 PUL 给定 7: 端子 UP/DW 控制 9: 程序控制 (PLC) 给定 11: 多段速给定	0 (0~11)	RUN

- 四、 变频器通讯读写地址:
 - 1) PLC 读变频器的地址为: H2100 开始。(这里面的 2100 为十六进制数)
 - PLC 写变频器的地址为:H3000 开始。(这里面的 2100 为十六进制数) 根据所使用的方式来确认写入的数值。如下图:我们这里主要是做一些 简单的控制。
 - 3) 如要启动变频器的命令为: MODRW K2 H6 H3001 D300 K1。
 - 4) 命令解读: MODRW: 为 MODBUS 通讯专用指令。在 320 变频器测试中,

发现用 MODWR 与 MODRD 二个指令无效。会出现指令无反应。

K2 为 MODBUS 中的通讯站号。

H6 为写入命令。

H30001 为变频器状态通讯地址。

D300 为 PLC 内部寄存器地址。

K1 为每次写入的数据长度。

4.18 COx 组: 监控参数

C00组:基本监控

参数码(地址)	名称	参数码(地址)	名称
C00.00 (0x2100)	给定频率	C00.20 (0x2114)	模拟输出 AO
C00.01 (0x2101)	输出频率	C00.21 (0x2115)	保留
C00.02 (0x2102)	输出电流	C00.22 (0x2116)	计数器计数值
C00.03 (0x2103)	输入电压	C00.23 (0x2117)	本次上电运行时间
C00.04 (0x2104)	输出电压	C00.24 (0x2118)	本机累计运行时间
C00.05 (0x2105)	机械速度	C00.25 (0x2119)	变频器功率等级
C00.06 (0x2106)	给定转矩	C00.26 (0x211A)	变频器额定电压
C00.07 (0x2107)	输出转矩	C00.27 (0x211B)	变频器额定电流
C00.08 (0x2108)	PID 给定量	C00.28 (0x211C)	软件版本
C00.09 (0x2109)	PID 反馈量	C00.29 (0x211D)	PG 反馈频率
C00.10 (0x210A)	输出功率	C00.30 (0x211E)	定时器计时时间
C00.11 (0x210B)	母线电压	C00.31 (0x211F)	PID 输出值
C00.12 (0x210C)	模块温度1	C00.32 (0x2120)	变频器软件子版本
C00.13 (0x210D)	模块温度2	C00.33 (0x2121)	编码器反馈角度
C00.14 (0x210E)	输出端子X接通状态(注)	C00.34 (0x2122)	Z 脉冲累计误差
C00.15 (0x210F)	输出端子Y接通状态(注)	C00.35 (0x2123)	Z 脉冲计数
C00.16 (0x2110)	模拟量 Al1 输入值	C00.36 (0x2124)	故障预警码
C00.17 (0x2111)	模拟量 Al2 输入值	C00.37 (0x2125)	累计用电量 (低位)
C00.18 (0x2112)	键盘电位器输入值	C00.38 (0x2126)	累计用电量(高位)
C00.19 (0x2113)	脉冲信号 PUL 输入值	C00.39 (0x2127)	功率因数角度

● 通讯控制参数组地址说明				
功能说明	地址定义	数据	意义说明	R/₩ 特性
通讯给定频率	0x3000 或 0x2000	0~10000 对应 0. 0Hz~100	00. 0Hz	W/R
通讯命令设定	0x3001 或 0x2001	0x0000: 无命令 0x0001: 正转运行 0x0002: 反转运行 0x0003: 正转点动 0x0004: 反转点动	0x0005: 减速停机 0x0006: 自由停机 0x0007: 故障复位 0x0008: 运行禁止命令 0x0009: 运行允许命令	W/R
		Bit0 0: 停机状	态 1: 运行状态	
		Bit1 0: 非加速	3. 1:加速状态	
		Bit2 0: 非减退	5状态 1: 减速状态	1
变频器状态	0x3002 或 0x2002	Bit3 0:正向	1: 反向	R
		Bit4 0: 无故障	f 1: 变频器故障	1
		Bit5 0: GPRS 魚	释锁 1: GPRS 锁机状态	1
		Bit6 0: 无预警	· 1: 变频器预警	1
变频器故障码	0x3003 或 0x2003	变频器当前故障代码(见起	故障代码表)	R
通讯给定上限频率	0x3004 或 0x2004	0~10000 对应 0.0Hz~100	00. 0Hz	W/R
通信转矩设定	0x3005 或 0x2005	0~1000 对应 0.0%~100.0	1%	W/R
转矩控制正向最大频率限制	0x3006 或 0x2006	0~1000 对应 0.0%~100.0	%	W/R
转矩控制反向最大频率限制	0x3007 或 0x2007	0~1000 对应 0.0%~100.0	%	W/R
通讯给定 PID 设定值	0x3008 或 0x2008	0~1000 对应 0.0%~100.0	%	W/R
通讯给定 PID 反馈值	0x3009 或 0x2009	0~1000 对应 0.0%~100.0	%	W/R
故障及预警码读取 0x3010 或 0x2010 0~127 为故障代码		0~127 为故障代码 128)	及以上 为预警代码	R
输出端子状态	0x3018 或 0x2018	 外部借用変頻器输出端子, Bit0 - Y Bit1— TA1-TB1-TC1; Bit2 - 扩展 Y1 (需配合 BIT3 - 扩展 X1 (需配合) 	IO 扩展卡) 配合 IO 扩展卡)	R
AO 输出	0x3019 或 0x2019	0-10000 对应输出 0V-10V,	0mA -20mA	R

- 五、 测试方法:
 - 1) 设置变频器参数,请参考三
 - 2) 利用串口调试工具测试一下是否可以与变频器通讯正常,可以写入以下

字符: 02 06 30 00 06 D6 04 C7

35 串口调试软件4.5	- 🗆 X
端口: CONK3 ▼ 波特率: 9600 ▼ 数据位: 8 校验位: 元 校验位: 元 停止位: 1 状态 打开串口 发送 ★ 接收 当前发送行	
清空接收区 ▼ 16进制 显示保存发送 停止显示 ✓ 自动清 显示保存时间 保存数据 更改文件 ● 帧换行 data.txt ✓ 注	
发送区1 清空 手动发送 02 06 30 00 06 06 04 C7 发送区2 清空 手动发送 手动发送 发送区3 清空 手动发送 手动发送	CDT执给 CDT执 CDT执给 CDT执 CDT执 CDT CDT执 CDT执 CDT CDT CDT执 CDT CDT CDT CDT CDT CDT CDT CDT CDT CDT
发送区及发送文件轮发属性 发送区1属性 发送区2属性 只轮发一遍 周期 1000 ms 选择发送文件 I 6进制 校验 收到回答后发下一帧 定时 开始文件轮发 目动发 参加轮发 I 6进制 校验 超时时间 5 s 重发次数 开始发送区轮发 发送周期 1000 ms 发送周期 1000 ms	发送区3属性 ▼ 16进制 校验 ■ 自动发 ■ 参加轮发 发送周期 1000 ms

- 3) 观察变频器的频率是否有变化,如频率成功更改175.0H为通讯正常,如 没有任何更改。请检查参数设置与485接线。注意485的接线是否正确, 正确的方法是正对正、负对负。
- 4) 通讯帧结构请查阅变频器使用说明书。
- 六、 程序示例:

2021年11月12日星期五

杨

通讯测试成功

